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It is well known that at low load the hardness is de-
pendent on indentation load/size, which is known as
the indentation size effect (ISE) [1–6]. The power
law equation, generally employed to analyze the load-
indentation data [1], can be expressed as:

P = k1dn (1)

where, P is load, k1 and n are materials constants and d
is indentation (diagonal/diameter) size. This power law
equation is also referred to in literature as Meyer’s law
[2–4, 6, 7]. It should be noted that Meyer’s equation was
originally developed for a spherical indenter, where n
is directly related to the strain hardening coefficient of
the material [1, 8]. Onitsch [1, 9] extended this Meyer’s
power law equation for nonspherical indenters and ob-
served that in a macrohardness range n is 2.0, whereas
in a microhardness range, n is less than 2, irrespective
of the type of material. When n is equal to 2, the above
power law equation is also quoted as Kick’s law in lit-
erature [2, 10]. It has been pointed out earlier by several
workers that Meyer’s constant, k1 is having a strange
dimension of force/(length)n, which is dependent on
the value of n [3, 11, 12]. In order to resolve this prob-
lem, Li and Bradt [3] introduced the reference indenta-
tion size corresponding to load independent hardness,
whereas, Sargent [11] suggested using 10 µm indenta-
tion size corresponding to the standard hardness as a
reference. Gong etal. [4] have proposed a modified en-
ergy balance model after realising the limitations of the
existing energy and force balance model [2, 3, 12–14]
for analysing the problem of the ISE and for determin-
ing true hardness i.e., the load independent hardness.
The corresponding equation can be expressed as

P = a + bd + cd2 (2)

where, a is a measure of the surface residual stress and
experimental error, b and c are mainly related to the sur-
face and volume energy respectively. According to this
model the true hardness, HT , is found to be kc, where k
is the shape factor of an indenter (e.g., k is 1.8544 and
2 for Vickers hardness and for Meyer’s hardness re-
spectively). The aim of the present paper is to analyze
further the Meyer’s equation and to correlate with the
energy balance model. Analysis based on the proposed
approach will be carried out using the experimental data
available in literature.

Let us determine the hardness for an indentation us-
ing load, P and corresponding indentation area, A and
indentation size, s. By inserting the expression of P
from Equation 1, we can obtain the expression of hard-
ness (Hs) in terms of indentation size, Meyer’s constant
and indenter shape factor as:

Hs = P

A
= k

P

s2
= kk1sn

s2
= kk1sn−2. (3a)

From the above equation, Meyer’s constant k1, can be
written in terms of hardness as

k1 = Hs

ksn−2
. (3b)

Now inserting the expression for constant k1 in
Equation 1, we can obtain as

P = Hs

ksn−2
dn = Hss2

k

(
d

s

)n

(4)

or simply as, P = Km Dn, where, Km = Hss2

k = Ps as
normalized Meyer’s constant and D = d

s , which is de-
fined as normalized indentation size. By this transfor-
mation, we can overcome the dimensional problem en-
countered in the classical Meyer’s equation. Now this
new Meyer’s constant can be related to hardness or
load for the indentation, which can be defined at any
length scale. However as a natural choice, we will as-
sume, s = 1 µm indentation size, so that we can recover
the classical Meyer’s equation in the sense of parame-
ters but not in terms of exacts units and dimensions of
Meyer’s constants. The normalized Meyer’s constant
will have a force dimension. So the Equation 5 can be
transformed to hardness equation and can be written as
(using s = 1 µm):

H = H1µ Dn−2 = kKm

s2
Dn−2 = kKm Dn−2. (5)

Now we can summarise the relations obtained by nor-
malising the classical Meyer’s power law equation as:

P = Km Dn or, P = Ps Dn (6a)

and H = H1µ Dn−2. (6b)

Using the notation of Li and Bradt [3] for the critical
indentation size as d∗

0 and critical load Pc we can arrive
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from Equation 6a as:

P = Pc

(
d

d∗
0

)n

. (7)

While comparing this equation with the Equation 17 of
Li and Bradt [3], we have noted that both the equations
are identical except an extra (2/n) factor, which is asso-
ciated with the right hand side of their Equation 17. Af-
ter analysing their approach, which is different from the
present one, we found that this factor was erroneously
incorporated in the normalized Meyer’s equation pro-
posed by them, though the actual numerical value may
not significantly affect the analysis. However the nor-
malized Meyer’s equation, in terms of critical load and
indentation size should be represented correctly by the
above Equation 7.

The nature of the above Equation 6b suggests that
hardness continuously decreases with the increase of
load/size. Therefore, it cannot predict the transition
from ISE regime to non-ISE regime. In order to de-
termine the transition, we propose to adopt the concept
of the true hardness HT based on energy balance model.
Initially, at lower load the apparent hardness will give
rise to ISE, but after a critical load or indentation size,
the HA will be equal to HT. The apparent hardness
obtained from normalized Meyer’s Equation 6b can be
equated with the true hardness corresponding to critical
indentation size, d∗. Therefore, from this above argu-
ment we can correlate the Meyer’s equation with the
energy balance model. The condition of equality is as
follows:

As HA = H1 Dn−2, HT = kc;

therefore,

H1 Dn−2 = kc. (8)

Now from the above condition, we can obtain the criti-
cal indentation size, d∗ after which ISE should cease to
exist. Putting the value of H1 = kKms2 and rearrang-
ing the above equation we obtain as:

d∗ =
(

Kms2

c

) 1
2−n

=
(

Km

c

) 1
2−n

in µm as s = 1 µm. (9)

This is an important relation, which correlates between
the normalized Meyer’s equation and energy balance
model. The implication of this equation suggests the
existence of a critical length scale related to the upper
bound of the ISE. Similarly, the corresponding critical
load can also be determined.

Now we can analyze the indentation data obtained
from AlCoCu [6] and AlCoNi [7] decagonal quasicrys-
tals and Mg32(AlZn)49 intermetallic compound [16].
Though the Meyer’s classical equation has been used
to analyse in the former two cases [6, 7] but the true
hardness has not been determined. Here we will be able
to evaluate the true hardness and critical indentation
size.Figs 1, 2, and 3show the plot of the load-indentation

(a)

(b)

Figure 1 (a) Plot of the variation of load versus indentation diagonal
obtained from Vickers microindentation experiment [6] of the AlCuCo
decagonal quasicrystalline phase. (b) The experimental hardness data,
the hardness curve from Meyer’s Equation 6b, and the True hardness line
obtained from energy balance model, are plotted against the indentation
diagonal.

and hardness indentation data from Vickers microin-
dentation experiments. It can be mentioned that the data
for AlCoCu were taken upto 300 g load as the extensive
cracking at higher load makes the indentation measure-
ment inaccurate. Both the Meyer’s equation and the
energy balance model were fit with the experimental
data satisfactorily (Figs 1a, 2a, and 3a) with regres-
sion coefficient more than 0.99. The true hardness (HT)
was obtained from the energy balance model in each
case. The details of the coefficients are summarised as
follows:

(a) For AlCoCu decagonal quasicrystalline material
[6]

Meyer’s law: P = 0.00631d1.9409;

Energy Model: P = −0.00358 + 0.0096d + 0.0049d2

HT = 1.8544 × 0.0049
N

µm2
= 9.08 GPa.

(b) For AlCoNi decagonal quasicrystal [7]

Meyer’s law: P = 0.0061d1.9059;

Energy Model: P = 0.058 − 0.0011d + 0.0044d2

HT = 1.8544 × 0.0044
N

µm2
= 8.16 GPa.
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(a)

(b)

Figure 2 (a) Plot of the variation of load versus indentation diagonal
obtained from Vickers microindentation experiment [7] of the AlCoNi
decagonal quasicrystalline phase. (b) The experimental hardness data,
the hardness curve from Meyer’s Equation 6b, and the True hardness line
obtained from energy balance model, are plotted against the indentation
diagonal.

(c) For Mg32 (AlZn)49 intermetallic compound [16]

Meyer’s law: P = 0.0021d1.9243;

Energy Model: P = 0.0021 + 0.0011d + 0.0016d2

HT = 1.8544 × 0.0016
N

µm2
= 2.97 GPa.

Now using the Equation 10 d∗ are determined to be
70, 27, and 36 µm for AlCoCu, AlNiCo quasicrys-
tals and Mg32(AlZn)49 phase respectively. This appears
to be reasonable and consistent with the trend of the
hardness plot with the indentation size, which can be
seen in Figs 1b, 2b, and 3b. The intersection between
the Meyer’s curve of hardness and the true hardness
line can be seen clearly. The true hardness for Al-
CoCu, AlCoNi and Mg32(AlZn)49 phases was found to
be 9.01, 8.16, and 2.97 GPa, respectively, which also
seem to be consistent. The present analysis lends a
strong support to the proposed approach for finding
out the critical indentation diagonal by involving both
the Meyer’s power law equation and energy balance
model.

Thus, it can be concluded that the normalized
Meyer’s equation proposed here can give rise to a bet-
ter understanding of the Meyer’s constant (Km) and
it’s exponent (n). These parameters combined with the
coefficient of the energy balance model can predict
the critical indentation size after which ISE ceases to

(a)

(b)

Figure 3 (a) Plot of the variation of load versus indentation diago-
nal obtained from Vickers microindentation experiment [16] of the
Mg32(AlZn)49 intermetallic phase. (b) The experimental hardness data,
the hardness curve from Meyer’s Equation 6b, and the True hardness line
obtained from energy balance model, are plotted against the indentation
diagonal.

exist. Following this approach, the true hardness and
the critical indentation size were found for AlCoCu,
AlCoNi quasicrystalline, and Mg32(AlZn)49 crystalline
phases.
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